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Multi-Armed Bandits: introduction and motivation

Motivation: learning problem in agriculture

Objective: Help a community of farmers improve their crop-management
practices under challenging conditions.

m Grow maize in a rainfed context and
fixed soil conditions.

m Crop-management practice := set of
rules to follow by the farmer (e.g
planting date, fertilization,...)

We propose to test a selected number of
policies designed by experts

Figure: Maize Field in Ghana




Multi-Armed Bandits: introduction and motivation

Theoretical framework: Multi-Armed Bandits

m K unknown reward distributions (v1, ..., vk) called arms.
m At each time t a learner selects an arm and observe a (random) reward.

m Objective: maximize the expected sum of rewards.

— Exploration/Exploitation trade-off.




Multi-Armed Bandits: introduction and motivation

Regret and basic notations

Maximizing the expected sum of rewards = minimizing the regret.

Consider distributions (4, ..., vk) of means (u1, ..., k), and p* = max .

The regret at round T is

Rt =E

> - MA,)] =D AEN(T,

m Ag = p* — pg : "sub-optimality gap” of arm k.

m N(T) =, ; 1(A: = k) : Number of selections of arm k.

< in the presentation we assume that arm 1 is the best.




Multi-Armed Bandits: introduction and motivation

Objective

m [Burnetas and Katehakis, 1996]: if the arms come from the family of
distributions F, for each sub-optimal arm k

- E[Nk(T)] 1
>
T Tog(T) = o)

for some function C*.
m Objective:
1. achieve logarithmic regret: E[N,(T)] = O(log(T)).
2. If possible, match the optimal constant:

log(T)

E[N(T)] < T o)

+ o(log(T)) .




Multi-Armed Bandits: introduction and motivation

Back to agriculture: typical crop yield distributions

We use the Decision Support Systems for Agro-Technological Transfer
(DSSAT) simulator [Hoogenboom et al., 2019] to test algorithms in silico in
a "realistic” environment.

Empirical distributions estimated after #1e+06 samples
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3.0e-04 ol day: 072
= day: 087
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4 =+ yield upper bound _ -
2oe0s : m Reward = Crop Yield.

2.0e-04 4

! - m No simple parametric model for
"""" i the distributions.

density

1.5€-04 4
1.0e-04 {F

— We need to design
non-parametric algorithms.

5.0e-05

0.0e+00

0 2000 4000 6000 8000 10000
dry grain yield (kg/ha)

Figure: Yield distribution for different
planting dates from the DSSAT simulator




Multi-Armed Bandits: introduction and motivation

Some existing algorithms

m Upper Confidence Bound (UCB)
m Thompson Sampling (TS)

® Index Minimized Empirical
Divergence (IMED)

All these methods require some
knowledge on the
distributions.

The best algorithms extensively
use it (prior/posterior, KL) to
be optimal

0400 0425 040 o475 oS00  o0s2s 0S50 0575

Figure: 5 — 95% confidence intervals for
empirical means, Bernoulli distrib.,
(p1 = 0.5, Ny =200, p» = 0.48, N, = 60)

Figure: Densities of two Beta distrib.:
Beta(30, 30) and Beta(110,100)




Multi-Armed Bandits: introduction and motivation

Non-exhaustive list of (optimal) bandit algorithms

Algorithm ‘ Scope for optimality Algorithm parameters
kl-UCB! Single Parameter KL(ve, ver)
IMED? Exponential Family (SPEF) KL(vg, ver)
Thompson Sampling® (¥0)gco Prior/Posterior
KL-UCB!

IMED? Supp(v) C [b, B] Upper bound B
Non-Parametric TS*

1. [Cappé et al., 2013], 2. [Honda and Takemura, 2015],
3. see e.g [Kaufmann et al., 2012], 4. [Riou and Honda, 2020].




Multi-Armed Bandits: introduction and motivation

Contributions

Sub-Sampling Dueling Algorithms:

m Sub-Sampling Algorithms for Efficient Non-Parametric Bandit
Exploration (Neurips 2020). DB, Emilie Kaufmann and
Odalric-Ambrym Maillard.

m On Limited-Memory Subsampling Strategies for Bandits (ICML 2021).

DB, Yoan Russac and Olivier Cappé.

m Efficient Algorithms for Extreme Bandits (AISTATS 2022). DB, Yoan
Russac and Emilie Kaufmann.
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Multi-Armed Bandits: introduction and motivation

Contributions

Non Parametric TS / Dirichlet Sampling:

m Optimal Thompson Sampling strategies for support-aware CVaR
bandits (ICML 2021). DB, Romain Gautron, Emilie Kaufmann and
Odalric-Ambrym Maillard.

m From Optimality to Robustness: Dirichlet Sampling Strategies in
Stochastic Bandits (Neurips 2021). DB, Patrick Saux and
Odalric-Ambrym Maillard.

m Top-Two algorithms revisited (Neurips 2022). Marc Jourdan, Rémy
Degenne, DB, Rianne de Heide and Emilie Kaufmann.
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Multi-Armed Bandits: introduction and motivation

Outline

Sub-Sampling Dueling Algorithms (SDA)

A non-parametric algorithm for CVaR bandits: B-CVTS

Conclusion
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Sub-Sampling Dueling Algorithms (SDA)
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Sub-Sampling Dueling Algorithms (SDA)

Why Sub-Sampling?

Simple strategy: Follow The Leader (FTL): A; = argmax jik(t).

< bad scenario can happen with fixed probability = linear regret.

Example:

1. Best arm collects a few bad samples = mean under-estimated
2. Another arm pulled a lot = mean concentrates

3. Best arm never pulled again

Core Idea: Comparing the means of sub-samples of the same size is a "fair”
comparison between two arms!

14



Sub-Sampling Dueling Algorithms (SDA)

Fair comparisons: Sub-sampling Dueling Algorithms (SDA)

A round-based approach [Chan, 2020]:

1. Choose a leader: arm with largest number of observations!
2. Perform K — 1 duels: leader vs each challenger.
3. Draw a set of arms: winning challengers (if any) or leader (if none).

Duel

m Challenger — empirical mean fiy n, (full sample size Ny).

m Leader — mean [i; sy, n,) of a subsample S(Ni, Ny) of size Ny from
its history.

m Winner: k if fix.n > Jig,s(n,,n,). £ otherwise.

15



Sub-Sampling Dueling Algorithms (SDA)

Some sub-sampling algorithms

Hry (1) Hegry(r)
o GRL TR L,
\‘\Q'
Hei(r) Hi(r)
Sampling without Replacement Random Block Sampling

Hi(r)

Last Block Sampling

16



Sub-Sampling Dueling Algorithms (SDA)

Inspirations from the Literature

m Best Empirical Sample Average (BESA) [Baransi et al., 2014]:
» Tournament: arms eliminated successively.

> Sampling Without Replacement (SWR).

m Sub-Sample Mean Comparison (SSMC) [Chan, 2020]:
» Round-based approach = inspired SDA.

» Sub-sampling: worst sequence of consecutive observations,

1 n+m—1
inf Vn'n m—1 — — K .
nG[I,II\rILerl] { tm=t m ; }

17



Sub-Sampling Dueling Algorithms (SDA)

Pros and Cons of BESA and SSMC

BESA:

m + Sub-Sampling independent from the history of rewards.

m + Works very well in practice for K = 2 and usual SPEF distributions.

m - Tournament does not generalize well the duel principle.

SSMC:
L Leader vs Challenger is more convenient than tournament.
m - Sub-sampling can be costly and harder to generalize.

< SDA combines leader vs challenger duels and a reward-independent
sub-sampling algorithm, and we introduce novel elements of analysis.

18



Sub-Sampling Dueling Algorithms (SDA)

First theoretical guarantees

Assumption 1 (Al): For each arm k, the distributions vy (of mean p)
admits a good rate function /i:

Vx> gk, P(flin > x) < e
Vx < ik, P (fikn < x) < e

— Satisfied if E [e’\|X|] < 400 for some \ > 0 = light-tailed distributions.

Assumption 2 (A2): The sub-sampling algorithm is a Block Sampler

— e.g Random Block and Last Block.

19



Sub-Sampling Dueling Algorithms (SDA)

First theoretical guarantees

Lemma (First upper bound)

Consider v a bandit problem and SP a sampler satisfying resp. (A1) and
(A2). Then, under SP-SDA any sub-optimal arm k satisfies

1+e

E[NK(T)] < R0

log(T) + Ck(v,€)

20



Sub-Sampling Dueling Algorithms (SDA)

First theoretical guarantees

Lemma (First upper bound)

Consider v a bandit problem and SP a sampler satisfying resp. (A1) and
(A2). Then, under SP-SDA any sub-optimal arm k satisfies

_
E[N,(T)] < /i(%:) log(T) + Cu(v,€) +9;P(N1(r) < G log(r)) ,

where Cy(v,€) and Cy are both problem-dependent constants.

Key observation: Under (A1) and (A2), we only need to show that the best
arm is sufficiently explored.

20



Sub-Sampling Dueling Algorithms (SDA)

Ensuring sufficient exploration of the best arm

Two ingredients for exploration under SDA:
1. The sampler provides many diverse sub-samples.

2. If it plays many "diverse” duels, the best arm is likely to be pulled.

Key Result: RB-SDA and LB-SDA both provide a sufficient diversity of
sub-samples.

< their theoretical guarantees only depend on the family of distributions
considered.

21



Sub-Sampling Dueling Algorithms (SDA)

What kind of distributions are suitable 7

Definition (Balance function of a distribution)

For two distributions of cdf F; and Fy, let F; ; and Fy ; be the cdf of the mean
of j i.i.d samples. The balance function is defined for any (M, j) € N? as

alk(Mv.j) = IEXNFl,j ((1 - Fkaf(X))M) :

— Interpretation: probability that 1 loses M successive "independent” duels
with a fixed sample of size ;.

Balance condition: «1x(M, ) needs to be "small enough”.

22



Sub-Sampling Dueling Algorithms (SDA)

Suitable families of distributions

Definition (Assumption 3: Dominant left tail)

We say that v; has a dominant left tail if for all kK > 2:

dP,,

1 Vx < =
dyk €R, ¢, € (0,1) Vx <y, P,

(X)SC/(.

Examples for which the best arm has a dominant left tail:

m all arms come from the same Single Parameter Exponential family
(Bernoulli, Gaussian, Poisson, Exponential, ...)

m Vk, if X ~ vy then X = px + 7, and 7 is a centered light-tailed noise
with the same distribution for all arms.

23



Sub-Sampling Dueling Algorithms (SDA)

[llustration of unusual distribu

040 — Am1
— Arm 2

tions covered by (A3)

u| —— density ratio

——- =1

'

-1 -2 0 2 1

Figure: Two translations of the same Gaussian mixture (A = 0.5), and the ratio of

their densities with threshold c =1

— (A3) holds e.g for y = —0.54 and ¢

=0.8.
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Sub-Sampling Dueling Algorithms (SDA)

Summary

Theorem

Ifv=(v,...,vk) € FK is a bandit problem and (A1), and (A3) are
satisfied, then for all k > 2 LB-SDA and RB-SDA implemented with forced
exploration f, = +/log(t) both satisfy

1+e

TS 300

log(T) + O(1) ,

for any € > 0.

Furthermore, h(uk) = kl(pk, 1) is the optimal constant for SPEF:
RB-SDA and LB-SDA are even asymptotically optimal.

— while using no information on the families of distributions!

25



Sub-Sampling Dueling Algorithms (SDA)

Empirical results for SDA

Table: Average Regret on 10000 Table: Average Regret on 10000
random experiments with Bernoulli random experiments with Gaussian
Arms (means sampled uniformly) Arms (p;j ~ N(0,1) for each arm i)
Horizon | TS | IMED | SSMC | RB | WR Horizon | TS | IMED | RB | WR
10° 14 | 15 17 15 | 14 10? 41 | 45 38 |38
10° 28 | 32 34 32 |31 10° 76 | 82 70 |73
10* 46 | 51 55 51 | 51 10* 119 | 124 112 | 116
2.10* |52 |58 62 58 | 57 2.10* | 133|138 | 126 | 130

— all these results (for any algorithm/time horizon) are very similar . ..

... but SDA uses much less knowledge!

26



Sub-Sampling Dueling Algorithms (SDA)

Further insights

m We proposed and analyzed two extensions of LB-SDA:

> A natural extension to non-stationary environment.

» An adaptation for Extreme Bandits with robust comparisons of "tails".

m However, there are some cases where SDA does not work: Gaussian with
different variances, general bounded distributions . ..

— Motivation to continue exploring alternative families of
non-parametric algorithms.

27



A non-parametric algorithm for CVaR bandits: B-CVTS
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A non-parametric algorithm for CVaR bandits: B-CVTS

Back to the DSSAT environment

e s s st 10106 ot m No simple parametric model for
- E 5?525 the distributions.
e
ase0r T < the yield may be bounded by
=] ! a yield potential.
g oot A !
e m Maximizing the expected yield
soeos | Jf may not be suitable for the
00e100 ] farmers.

0 2000 4000 6000 8000 10000
dry grain yield (kg/ha)

< we want an alternative

Figure: Yield distribution for different risk-aware metric.

planting dates from the DSSAT simulator
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A non-parametric algorithm for CVaR bandits: B-CVTS

Conditional Value at Risk (CVaR)

Definition: For a distribution v and « € (0, 1],

1
CVaR,(v) = sup {x — &]E” [(x — X)ﬂ} ~ Exu[X|X < g -
xeR

< average of the fraction « of the worst possible outcomes.

We use CVaR to model different farmers' preferences:

m small a — food security. If a =~ 0: "worst-case analysis".
m larger a — market-oriented farming. o = 1: standard setting.

30



A non-parametric algorithm for CVaR bandits: B-CVTS

Back to the DSSAT environment

Empirical distributions estimated after #1e+06 samples

s @ day: 057
3.0e-04 4 A e day: 072
' { N = o
i \ e day: 102

25004 3\ — -+ yield upper bound

T T T T +
0 2000 4000 6000 8000 10000
dry grain yield (kg/ha)

Figure: Yield distribution for different
planting dates from the DSSAT simulator

Table: Empirical yield distribution metrics
in kg/ha estimated after 10% samples in
DSSAT environment

«

Blue
Yellow
Green
Red

5% 20% 80%  100%
0 448 2238 3016
46 627 2570 3273
287 1059 3074 3629
538 1515 3120 3586

# best arm according to o = we need specific CVaR bandit algorithms!
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A non-parametric algorithm for CVaR bandits: B-CVTS

CVaR Bandits

A good strategy pulls the arm with the best CVaR most often.

At time T, for a bandit v = (11, ...,vk) we define the a-CVaR regret by

K
RY(T) =D ARE[N(T)],
k=1
where A¢ its a-CVaR gap,

AY = max CVaR,(v;) — CVaR,(vk) .
i€[K]

32



A non-parametric algorithm for CVaR bandits: B-CVTS

Best possible asymptotic performance

Theorem (Regret Lower Bound in CVaR bandits)

Let a € (0,1], v = (v1,...,vk) € FK for some family of distributions F.
Then, under any uniformly efficient algorithm it holds for any sub-optimal
arm k that BT T )

lim v[N(T)] >

Totoo log T = CI(vk,v1)

— we still target logarithmic regret.

<+ CI extends the notion of asymptotic optimality to CVaR-bandits.

33



A non-parametric algorithm for CVaR bandits: B-CVTS

Non-Parametric TS (NPTS) for o =1

m From [Riou and Honda, 2020], generalizes Beta/Bernoulli TS.

m Uses upper bound B, Dirichlet distribution D,, = Dir(1,...,1).

Consider observations X = (Xi,...,X,), a step of NPTS computes

‘ ﬁ(X) = 27:1 W,'X,‘ + W,~,+1B N w ~ Dn+1 .

Choose A, € argmax; ¢ i(Xk) = asymptotically optimal regret.

Motivation: Strong theoretical and empirical performance when o = 1,
no need for tight concentration inequalities for the CVaR.

34



A non-parametric algorithm for CVaR bandits: B-CVTS

B-CVTS for a € (0, 1]

Intuition: re-weighted mean — CVaR of a noisy empirical distribution.

Details: given B, « and history (Xi,...,X,):

1. Draw w = (w, ..., Wpt1) ~ Dpy1, define 7, the distribution with
density

n

Un(x) =Y wil(X;=x) +wy1l(B=x) .

i=1

random re-weighting exploration bonus

2. Return ¢, = CVaR, (7).

Arm selection: At round t, given the histories (X}, ..., X)) choose

_ ~k
A; = argmaxc,, .

35



A non-parametric algorithm for CVaR bandits: B-CVTS

Theoretical Guarantees

Theorem (Optimality of B-CVTS)

For any parameter . € (0, 1], if all the distributions are continuous then
B-CVTS is asymptotically optimal, i.e for any sub-optimal arm k it satisfies

E[N(T)] < —2&7)

< m + o(log(T)) -

— First (provably) asymptotically optimal algorithm in CVaR bandits.

The proof follows [Riou and Honda, 2020], but required technical results for
boundary crossing probabilities, i.e

PWND,,H(CVGRQ(DK") 2 C))

36



A non-parametric algorithm for CVaR bandits: B-CVTS

Experiments with the DSSAT environment

B-CVTS vs U-UCB (UCB on the CVaR) and CVaR-UCB (CVaR of
"optimistic” cdf), same upper bound, & = 5% and a = 80%.

1e6 Averaged over #1040 replications for @ = 5%
=h- B-CVTS
3.0 v-ucs
-A- Cvar-ucB
0.05 to 0.95 quantile range
_ 254
3
<
E
= 204
[
B
2
o
D1s4
s
g
-é 1.0
s ke
..... Aok A
05 kek
ey 3
e . S i ot
00{
T T T T T T
4 2000 4000 6000 8000 10000
time step t

Figu

5% —

re: Averaged CVaR regret and
95% CI for 1040 replications with

horizon T = 10* and a = 5%

1e6 Averaged over #1040 replications for a =80%
175
=k- B-CVTS
u-ucs
150 -4 Cvar-uCB
0.05 t0 0.95 quantile range
£ 125
2
€ 1.00
)
2 A
- P o
20754 ..‘A'"""
> R
Kl Pt A
& 050+ AGE
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A -
0.25 4 4 ——
4 ke
r ek
Lk
0.00
4 2000 4000 6000 8000 10000
time step t

Figure: Averaged CVaR regret and

5% — 95% ClI for 1040 replications with

horizon T = 10* and a = 80%
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More

A non-parametric algorithm for CVaR bandits: B-CVTS

experiments: 7 arms, a = 5%

Empirical distributions estimated after #1e+06 samples

4.0e-04

3.5€-04

3.0e-04

2.5€-04 4

2.0e-04 4

density

1.5e-04 4

1.0e-04 1|

5.0e-05 +

0.0e+00

@ day: 057

wde= day: 072

day: 087

day: 102

day: 117

day: 132

day: 147

+ yield upper bound
CVaR @ 20%

2521

0 1

4000 6000 10000

dry grain yield (kg/ha)

Averaged over #1040 replications for a = 5%

ole6
&= B-CVTS
- uuce

s -A- Cvar-ucs

S

empirical yield regret (kg/ha)
~ w

0.05 t0 0.95 quantile range

19 ek
B SN
|
(I) ZOIOO AOIOO 60'00 80'00 lDéﬂO

time step t

Figure: 7 arms from DSSAT, empirical
distributions ; 10° samples.

Figure: DSSAT 7 armed bandit, @ = 5% ;

1040 replications.
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A non-parametric algorithm for CVaR bandits: B-CVTS
More experiments: over-estimating the upper bound

Empirical distributions estimated after #1e+06 samples

@~ day: 057 ; 1e6 Averaged over #1040 replications for a = 5%
3.0e-04 _:_ :a’ EE H = BCVTS
ay: | 3.0 9 vucs
@ day: 102 | A Qvaruce
g — - yield upper bound .
25008 ity i 0.05 to 0.95 quantile range
—~ 251
H 3
] £
2.0e.08 | E}
2z | < 204
3§ 15e04 | g
2154
S
10604 :
1 5 104
£
5.0e-05 o
054
0.0e+00
0 5000 10000 15000 20000 25000 30000 00
dry grain yield (kg/ha) 0 2000 4000 6000 8000 10000

time step t
Figure: Initial distributions with

. R0/ . _—
over-estimated support ; 10° samples. Figure: o = 5% ; 1040 replications.

< Same results as with "exact” upper bound!

< we can use a conservative upper bound provided by experts.
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A non-parametric algorithm for CVaR bandits: B-CVTS

Further Theoretical Guarantees

Theorem (Logarithmic regret with B = +00)
If « <1, B is unknown, and B-CV'TS runs with B = +oo it holds that

log(T)

E[Nk(T)] < min{log(1/a), CZ (vk, 1)} 4=

o(log(T)) -

< Optimal if log(1/a) < CJ (vk,v1), bounded by |;Z%1/T;) otherwise.

— the price to pay is small in risk-averse setting:

log(T)

= — 4 =10%, T = 10*.
log(1/a) or & = 10%,
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A non-parametric algorithm for CVaR bandits: B-CVTS

Brief overview of Dirichlet Sampling

m For a = 1, another strategy is needed if B unknown
m We propose a data-dependent exploration bonus inside a round-based

algorithm.

1. Bounded Dirichlet Sampling (BDS): logarithmic (but close to
optimal) regret for bounded distributions under a detectability
assumption.

2. Quantile Dirichlet Sampling (QDS): logarithmic regret for unbounded
distributions satisfying a mild quantile condition.

3. Robust Dirichlet Sampling (RDS): slightly larger than logarithmic
regret (Rt = O(log(T)loglog(T))), under (A1) only !

— Theoretical trade-off between generality and regret guarantees.
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Conclusion

Summary of the contributions

Focus | SDA | NPTS/DS
Concentration (A1) From bounded
Dominant left tail (A3) to light-tailed (A1).
Non-Parametric
assumptions — Logarithmic regret, — trade-off theoretical
optimal for SPEF. guarantees/assumptions
Alternative Extreme Bandits CVaR Bandits, o € (0, 1]
metric (~ CVaR for o — 0) for bounded distributions

Limited memory (LB-SDA)
Extensions Non-Stationary environments Batched Feedback
(SW-LB-SDA)
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Conclusion

Perspectives

m Extending the sub-sampling idea to structured settings (e.g linear
bandits) is non-trivial:

» Equalizing sample size is not the right thing to do.

» Equalizing some "information criterion” instead?

m Building optimal NPTS algorithms for unbounded distributions (e.g for

sub-gaussian distributions), making SDA work when (A3) does not hold.

m Other interests: bridging the gap between the simulator and the
real-world in the use-case in agriculture: taking in account context,
spatial /temporal correlations, weather predictions, ...
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Conclusion

Thank you for your attention !
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Conclusion

SDA for structured /contextual bandits

m Examples: linear bandits, kernel bandits, GP bandits, ...
m Sample size do not reflect the information collected. Linear bandits:
re=0xa 40, Vi=XIXe+ My,

For actions (xx)xe[k] We could e.g compare |\Xk||\_/1_1
t
m |dea:

1. Leader: £ = argmax, ¢« kaH;il
t

2. Compute estimator 0. (all observations), for k # £ compute 67“
(e.g go back in time until the metrics match)

~T ~
3. Duel : 0; xx vs OtTXg

Challenges: concentration tools, balance condition. ..
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Conclusion

Why Block Samplers?

Lemma (concentration of a sub-sample)

Consider a round s < r, two distributions v, and v, under the event
Mg = {ng < Na(s) < Np(s) < r}. IfSi(.,.) is a block sampler, for any
€ € (pa, pp) it holds that

r r r
Zp(ﬁa,Na(s) > [, 55 (Ny(5), N () Ms) < Z P(Haj > &) +r Z P (fib,; <€)
s=1

Jj=no Jj=no

Elements of Proof
L{X<Ylc{X<gu{y>g
2. {N; = n,ais pulled} can only happen once

3. Union bound on the blocks, and P(fip ji1.j4n > &) = P(fipj > &) for
any n, and if N, < r there are at most r blocks.
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Conclusion

More on the diversity condition

Diversity = calling the sampler multiple times ensures a variety of
sub-samples.

Xm,H,j 1= the number of mutually non-overlapping sets in m sub-samples of
size j in a history of size > H.

Diversity with Block Samplers: An upper bound on X, 1 ; is obtained by
upper bounding the number of unique starting elements.

Proofs of the "diversity property” for RB, LB

m RB: drawing random starts allows to cover most of the history with high
probability (Lemma 4.3 in [Baudry et al., 2020])

m the leader is pulled sufficiently enough to "move” the sub-sample in a
sliding window fashion (Lemma 3 in [Baudry et al., 2021a])
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Conclusion

More on the Balance condition

Definition (Balance Condition)

Let M; = O(t/logt), n = O(logt), and consider some sequence f;. The
balance condition holds between F; and Fp (u1 > po) if

T n
ZZa(th) =o(log T) .

t=1 j=f,

< M; is the number of "diverse” duels that we are sure to obtain with RB
and LB sub-sampling.

— f; is an amount of forced exploration introduced in SDA, i.e: if some
arm satisfies Ni(t) < f; it is automatically pulled.

< this is the property that restrains the family of distributions for which
SDA works.
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Conclusion

Some problems for which sub-sampling requires adaptation

m The best arm has higher variance

0.40

0.35 4

L (X < =5) ~ 1071, while
(X < =5)~ 1077

n P
0.30 1
P
0.254

0.20 4

— if X113 < =5, arm 1 may be

0.15 "stuck” for a Iong time.

0.10 4

0.05 4

m SSTC [Chan, 2020]: compare

0.00

15

t-stats,
Figure: pdf of distributions 11 = A/(1,3) R R N N
and v, = _/\/‘(07 1) Kk ne — He,n, vs He,S(n,ng) — He,n,
/O'\k,nk aZ,S(nk,ng)
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Conclusion

Some problems for which sub-sampling requires adaptation

051 p e ——
] b m Worst-cases of the best arm
0.4 : : cannot be reached by the other
1 1 arm
0.3 1 1
1 |
02] ! | m Additional forced
I I exploration/data processing to
0.1+ 1 I
I I apply SDA?
0.01 1 !
—i.O —6.5 010 0?5 1?0 1?5 2?0 2?5 (SN for known bounded SuppOl’tS
Figure: pdf of distributions the binarization trick can be
v =U([-1,2.5]) and v» = U([—0.5,1.5]) used.

51



Conclusion

Upper bound on the balance function under (A3)

1. (A3) = ¥x < yi, F1j(x) < dFij(x) .

2. Yu < yy:

< IFi j(u) + e MFei(®  (using (A3) and log(1 — u) < —u)

(1+log (M) —jlog(c)) (Optimizing over Fy j(u))

— sufficient in our proofs with asymptotically negligible forced exploration.

= If ay(M,j)=0 (W) for any a no forced exploration needed.
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Very sketchy proof sketch for the regret upper bound

We upper bound E[Ng(T)] as follow:

m Dominant log term = sum all the events
"U(r) =1, k is pulled and Ni(T) < 251"

— Additional constant terms under ¢(r) # 1

] ]E[E;E(r) # 1], decomposed for each r as

» 1 has already been leader but has been overtaken : highly un-probable:
< it must have lost a duel with at least sample size r/K!

» 1 has never been leader, itself decomposed in

o Never been leader but relatively large number of samples
Ni(r) = Q(logr) — very un-likely too

o Never been leader and "stuck” with a small sample size N;(r) = O(logr):
this is where we need diversity and balance condition!

53



Conclusion

Motivation for LB-SDA with limited memory

Theorem (Asymptotic Optimality LB-SDA-LM)

Just as LB-SDA, LB-SDA-LM is asymptotically optimal when arms belong to
the same Single-Parameter Exponential Family (SPEF).

Table: Storage/computational cost at round T for some subsampling algorithms.

Algorithm Storage Comp. cost: Best-Worst case
SSMC
[Chan, 2020] o(T) o()-0(T)
RB-SDA o(T) O(log T)
LB-SDA o(T) 0(1)-O(log T)

LB-SDA-LM O((log T)?) O(1)-O(log T)
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LB-SDA-LM with Bernoulli arms

H1 = 0.05 35 UCBL
— = LB-SDA-LM
H2 = 0.15 301 —e— LB-SDA
=++s KLUCB
Memory: B
g
‘ 5 50 ‘ E’20
m, = log(r -
r g( ) + ?EIS
a 10
— Between 50 and
150 samples kept for ’
each arm. 0
0 2000 4000 6000 8000 10000
Round ¢

Figure: Cost of storage limitation on a Bernoulli instance.

The reported regret are averaged over 2000 independent
replications.

— Limiting memory does not have a significant cost in this example!
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Abruptly Changing Environments: SW-LB-SDA

Sliding Window LB-SDA
m Natural adaptation of LB-SDA with a sliding window of size 7
m Additional mechanisms to ensure sufficient exploration

m Non-parametric nature = potential for new settings

Theorem (Regret Guarantees)

If the time horizon T and number of breakpoints I+ are known, and that
between each breakpoints the arms are from the same SPEF, choosing

T=0(\/Tlog(T)/T 1) ensures that the dynamic regret of SW-LB-SDA

satisfies
Rr=0(/TlrlogT).
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Example: SW-LB-SDA with Gaussian arms

ueBl
00 —M— —_— —— SW-LB-SDA
p 800 == E. 5
0.8 —Q—.—‘ —o—o—
0.7 4
& 600
0.6 1 E
051 &—0—0— %400
0.4+ \— ]
— Arm1
037 o am2 200
0.2 Arm 3 P P
i) 20‘00 40b0 60‘00 80‘00 10600 0
) 2000 4000 6000 8000 10000
Figure: Time-dependent means, Round ¢
associated with standard _ ] o
deviations Figure: Performance on this Gaussian instance,
o ={0.25,0.5,1,0.25} averaged on 2000 independent replications.
- 7 N ) -

— SW-LB-SDA naturally adapts to the variance changes!
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SDA for Extreme Bandits (very short introduction)

m Extreme Bandits: maximize E[max; X;] = find arm with heavier tail

m Non-parametric approaches are appealing, but hard to derive theoretical
guarantees.

m Compare Quantile of Maxima = nice concentration properties

m Two algorithms: QoMax-ETC (needs horizon T), and QoMax-SDA
(anytime).

m Strong theoretical guarantees under mild assumptions, strong empirical
performance.
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Intuition: why Dirichlet re-sampling works in B-CVTS?

For distributions bounded by B, it holds that for ¢ > CVaR,(7,) and any
neN

1 ~ ~
- log (Pw~p,,,(CVaR.(7,) > ¢)) = CT (D, )+ 0(1) .
< Dirichlet Sampling implicitly samples with a rate related to the C7.

m Upper bound: Chernoff method, Dirichlet weights as a normalized sum
of independent exponential r.v, and properties of the CVaR.

m Lower bound: discretization argument as in [Riou and Honda, 2020] +
working directly on the integral.
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Highlights of the analysis

2 regimes in the analysis: Post-Convergence and Pre-Convergence (arm is
sampled more (resp. less) than the optimal rate).

m Post-CV: The empirical distribution will eventually get "close enough" to
the true (DKW inequality), so that

CE (D, c) = C(v,c).
— we use the continuity of K¢ in both arguments.

m Pre-CV: Adding the upper bound B in the history allows to balance all
"bad scenarios”. lllustration with multinomial distributions,
P(@n)

Py~p,, (CVaRa(vn) = c[vn)

< exp(—nd.)

for some universal constant § > 0, if ¢ < CVaR,(v).
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Dirichlet Sampling (DS)

Another way to perform duels

m Leader — empirical mean [i,.
m Challenger — Dirichlet Sampling with a bonus B (k, ¢).

m Winner: largest of the two.

Inspired by the Non-Parametric TS of [Riou and Honda, 2020], DS computes
a "biased re-weighted mean”

n
ik, 0,B) =Y wWiXi+ Was1  B(k,0) , with [[w][y =1.
i=1 d M
ata-dependent
exploration bonus
arm k vs arm £

where w ~ Dp11 (1,...,1) (Dirichlet distribution with param 1 for each item)
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First theoretical guarantees

Theorem (Generic regret decomposition of DS)

Consider a bandit model satisfying (A1). Then, for any re-weighted mean
depending only on the empirical mean of ¢, it holds for any € € [0, Ay) that

E[N«(T)] < ni(T) + Bf . + Coe

where C, . is independent on T and

r=1

T-1
n(T)=E lz 1(k € Ay, 4(r) = 1)] ,
where {(r) is the leader at round r, and
K [2log(T)/h(pxte)]

1 (p1,0 < 70)
Bfe=> Z e B {P(ﬁ(l’k’v%) = ﬂ)] '

k=2 RE[pyr —€,pyr +e]

o~
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Choice of the Exploration Bonus B(k, ¢)

Lemma (Necessary condition with a data-independent bonus)

Consider a fixed bonus B,,, and denote by F; the cdf of v1. Then, Blﬁe can
converge only if

B> p+ Ex~r (0= X)4] -

1
1—F(p)
This result motivates a bonus of the form

~ ~ 1,
Bk, 0) = B(X,fie,p) =i+ px = > _(fie = Xiei)"
n i=1

for some parameter p that will be tuned under different assumptions (not
necessarily on Fy(p)).
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Boundary Crossing Probability

We call "Boundary Crossing Probability” (BCP) the quantity
n+1
[BCP] = Pyop,., <Z wiX; > u) ,
i=1

where (Xi,...,X,) is a collection of fixed data and w ~ D, (1,...,1).

< the design of DS algorithms is guided by upper and lower bounds on the
BCP.
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Three algorithms to relax the bounded support assumption

m Bounded DS (BDS):

> B(k,¢) = Bif it is known (= NPTS [Riou and Honda, 2020]).

> B(k, ) = max{max X; + vy, B(X, fi¢, p)} for p > Iog(l 5 if B is unknown
but 3, p: P([B — v, B]) > p = upper bound unknown but detectable.

m Quantile DS (QDS): replace the fraction « of best outcomes of arm k by
their mean (un-biased truncation), use B(k, ¢) = B(X, iz, p) with
p> 1:—2“ = enough information before the quantile so that the best arm
can be identified.

m Robust DS (RDS): use B(k,¢) = B(X, fi¢, pn,) = no assumption at all.

65



Conclusion

Theoretical Results: from optimality to robustness

m Bounded Dirichlet Sampling (BDS) is optimal for bounded distributions
with known upper bound, and has logarithmic (but close to optimal)
regret under the detectability assumption.

m Quantile Dirichlet Sampling (QDS) has a logarithmic regret for
distributions satisfying a mild quantile condition.

m Robust Dirichlet Sampling (RDS) has slightly larger than logarithmic
regret (Rt = O(log(T) loglog(T)), but for all light-tailed distributions.

— the choice of the algorithm depends on the quantity of information we
have on the distributions. In any case, RDS can be used.

— Theoretical trade-off between generality and regret guarantees, but in
practice all algorithms perform very well.
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Look back: SDA vs DS

Question: In a roud-based algorithm, what can we do to give a fair chance to
the challenger?

m Penalizing the leader by using a subset of its observations,
Sub-Sampling Dueling Algorithms [Baudry et al., 2020].

— works because the leader's sample size is large.

m Boosting the challenger by randomly re-sampling its observation and
an exploration bonus based on the leader’s history:
Dirichlet Sampling [Baudry et al., 2021b].

— works because with appropriate assumptions on the distributions and
because the mean of leader concentrates.
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