Sub-Sampling Algorithms for Efficient Non-Parametric Bandit Exploration

Abstract

In this paper we propose the first multi-armed bandit algorithm based on re-sampling that achieves asymptotically optimal regret simultaneously for different families of arms (namely Bernoulli, Gaussian and Poisson distributions). Unlike Thompson Sampling which requires to specify a different prior to be optimal in each case, our proposal RB-SDA does not need any distribution-dependent tuning. RB-SDA belongs to the family of Sub-sampling Duelling Algorithms (SDA) which combines the sub-sampling idea first used by the BESA [1] and SSMC [2] algorithms with different sub-sampling schemes. In particular, RB-SDA uses Random Block sampling. We perform an experimental study assessing the flexibility and robustness of this promising novel approach for exploration in bandit models.

Publication
Advances in Neural Information Processing Systems 33 (NeurIPS 2020) - Spotlight

Related